Distribution of suramin, an antitrypanosomal drug, across the blood-brain and blood-cerebrospinal fluid interfaces in wild-type and P-glycoprotein transporter-deficient mice.
نویسندگان
چکیده
Although 60 million people are exposed to human African trypanosomiasis, drug companies have not been interested in developing new drugs due to the lack of financial reward. No new drugs will be available for several years. A clearer understanding of the distribution of existing drugs into the brains of sleeping sickness patients is needed if we are to use the treatments that are available more safely and effectively. This proposal addresses this issue by using established animal models. Using in situ brain perfusion and isolated incubated choroid plexus techniques, we investigated the distribution of [(3)H]suramin into the central nervous systems (CNSs) of male BALB/c, FVB (wild-type), and P-glycoprotein-deficient (Mdr1a/Mdr1b-targeted mutation) mice. There was no difference in the [(3)H]suramin distributions between the three strains of mice. [(3)H]suramin had a distribution similar to that of the vascular marker, [(14)C]sucrose, into the regions of the brain parenchyma that have a blood-brain barrier. However, the association of [(3)H]suramin with the circumventricular organ samples, including the choroid plexus, was higher than that of [(14)C]sucrose. The association of [(3)H]suramin with the choroid plexus was also sensitive to phenylarsine oxide, an inhibitor of endocytosis. The distribution of [(3)H]suramin to the brain was not affected by the presence of other antitrypanosomal drugs or the P-glycoprotein efflux transporter. Overall, the results confirm that [(3)H]suramin would be unlikely to treat the second or CNS stage of sleeping sickness.
منابع مشابه
Pentamidine movement across the murine blood-brain and blood-cerebrospinal fluid barriers: effect of trypanosome infection, combination therapy, P-glycoprotein, and multidrug resistance-associated protein.
During the first stage of human African trypanosomiasis (HAT), Trypanosoma brucei gambiense is found mainly in the blood, and pentamidine treatment is used. Pentamidine is predominantly ineffective once the parasites have invaded the central nervous system (CNS). This lack of efficacy is thought to be due to the inability of pentamidine to cross the blood-brain barrier, although this has never ...
متن کاملP-glycoprotein contributes to the blood-brain, but not blood-cerebrospinal fluid, barrier in a spontaneous canine p-glycoprotein knockout model.
P-glycoprotein is considered to be a major factor impeding effective drug therapy for many diseases of the central nervous system (CNS). Thus, efforts are being made to gain a better understanding of P-glycoprotein's role in drug distribution to brain parenchyma and cerebrospinal fluid (CSF). The goal of this study was to validate and introduce a novel P-glycoprotein-deficient (ABCB1-1Delta) ca...
متن کاملCompartment-specific roles of ATP-binding cassette transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid.
Topotecan is a substrate of the ATP-binding cassette transporters P-glycoprotein (P-gp/MDR1) and breast cancer resistance protein (BCRP). To define the role of these transporters in topotecan penetration into the ventricular cerebrospinal fluid (vCSF) and brain parenchymal extracellular fluid (ECF) compartments, we performed intracerebral microdialysis on transporter-deficient mice after an int...
متن کاملThe role of p-glycoprotein in limiting brain penetration of the peripherally acting anticholinergic overactive bladder drug trospium chloride.
The aim of the present study was to characterize the role of the drug-efflux transporter P-glycoprotein (P-gp) for the disposition of trospium chloride, a widely used anticholinergic drug for the treatment of overactive bladder. P-gp-deficient mdr1a,b(-/-) knockout mice were given either 1 mg/kg trospium chloride orally or 1 mg/kg intravenously to analyze brain penetration, intestinal secretion...
متن کاملSpecies comparison of in vivo P-glycoprotein-mediated brain efflux using mdr1a-deficient rats and mice.
The experiments described herein compared the extent of in vivo P-glycoprotein (P-gp)-mediated brain efflux between rats and mice for a set of known central nervous system compounds. With use of newly introduced genetically modified mdr1a-deficient rats and their gene-competent counterparts, the brain to plasma distribution was assessed and compared with the distribution pattern in mdr1a-defici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 51 9 شماره
صفحات -
تاریخ انتشار 2007